Node location is a critical demand in some popularity of Wireless Sensor Network (WSN) applications. This paper proposes a node location identification in WSN based on a combined Ant Lion Optimizer (ALO) with a typical model of localization. The fitness function is modeled mathematically based on estimating distances of the WSN nodes. The updating solutions of the population are figured out for position correcting to improve the node positioning accuracy. The effects of parameters like node density and communicating range is verified in the experiments to evaluate the performance of the proposed method in terms of concerning average localization error and success ratio. Compared to the results of the test with Cuckoo Search (CS) and Particle Swarm Optimization (PSO) shows that the proposed approach effectively offers a better competitor in finding location accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Node Localization in Wireless Sensor Network by Ant Lion Optimization


    Weitere Titelangaben:

    Smart Innovation, Systems and Technologies


    Beteiligte:
    Balas, Valentina Emilia (Herausgeber:in) / Pan, Jeng-Shyang (Herausgeber:in) / Wu, Tsu-Yang (Herausgeber:in) / Dao, Thi-Kien (Autor:in) / Pan, Jeng-Shyang (Autor:in) / Nguyen, Trong-The (Autor:in) / Chu, Shu-Chuan (Autor:in) / Tran, Huu-Trung (Autor:in) / Nguyen, Trinh-Dong (Autor:in) / Vu, Ngoc-Thanh (Autor:in)


    Erscheinungsdatum :

    02.07.2021


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Node Localization in Wireless Sensor Network by Ant Lion Optimization

    Dao, Thi-Kien / Pan, Jeng-Shyang / Nguyen, Trong-The et al. | TIBKAT | 2021




    Node Selection Strategy for Target Localization in Wireless Sensor Networks

    Deng, K.-b. / Liu, Z. | British Library Online Contents | 2009