The standardized principal component analysis (SPCA) is the method that uses the correlation matrix instead of the covariance matrix, and then eigenvalues and eigenvectors from SPCA apply to image processing procedures. When each principal components column is compared between the eigenvector matrices from two different time images, the sign of principal components indicates the possibility in land-use/land-cover changes. The Landsat ETM+2000 was obtained in Suwon with 30 meter ground spatial resolution. The principal component 2 explains the difference between urban and vegetation areas through all bands. Two bands, band 2 and band 7, show the change in sign, meaning that urban areas and vegetation areas might distinctively show the characteristics if band 2 and band 7 are used in classifications. The classification is applied to composite images, which are the PC2, and 2, and band 7 composite image and the band 1, band 3, and band 5 composite image from the signature separability analysis. The principal component analysis is a useful statistical measurement for selecting a band combination including the principal component images. The eigenvector matrix can provide the band determination from the sign changes. The SPCA also gives critical information on determining the appropriate principal component, and the classification results from the accuracy assessment matrix described the large improvement on agricultural lands and bare lands.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improving the classification of Landsat data using standardized principal components analysis


    Weitere Titelangaben:

    KSCE J Civ Eng


    Beteiligte:
    Chang, Hoon (Autor:in) / Yoon, Wan Seok (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.07.2003


    Format / Umfang :

    6 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Ship silhouette recognition using principal components analysis

    Gouaillier, Valerie / Gagnon, Langis | SPIE | 1997


    Affine invariant descriptors using principal components analysis

    Oirrak, A. | British Library Online Contents | 2008


    Improving Thematic Classification Accuracy of Mangroves Area with Landsat ETM+ Imagery using ICM Contextual Method

    Rakotoniaina, S. / Razafindramasy, F. / Rakotondraompiana, S. et al. | British Library Conference Proceedings | 2006