The modern equipment is developing in the direction of complexity and integration, and the traditional diagnosis methods can’t adapt to the changes of equipment. With the development of deep learning, deep learning algorithms are gradually used in the field of fault diagnosis. Most of these algorithms ignore the correlation between data when extracting features from multi-source data. In response to the above problem, this paper proposes a fault diagnosis algorithm based on Bi-directional Long Short-Term Memory, which can extract the correlation features between multi-source data. Through the experiment on the simulated operating data of the heating furnace of steel rolling, the algorithm of this paper has a high fault recognition rate.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Fault Diagnosis Algorithm Based on Bi-directional Long Short-Term Memory


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Wang, Yi (Herausgeber:in) / Martinsen, Kristian (Herausgeber:in) / Yu, Tao (Herausgeber:in) / Wang, Kesheng (Herausgeber:in) / Yin, Bin (Autor:in) / Li, Xiaolong (Autor:in) / Liu, Lilan (Autor:in) / Wu, Fang (Autor:in)

    Kongress:

    International Workshop of Advanced Manufacturing and Automation ; 2020 ; Zhanjiang, China October 12, 2020 - October 13, 2020



    Erscheinungsdatum :

    23.01.2021


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch