This paper proposes the Internet of Things-based real-time adaptive traffic signal control strategy. The proposed model consists of three-layer; edge computing layer, fog computing layer, and cloud computing layer. The edge computing layer provides real-time and local optimization. The middle layer, which is the fog computing layer, performs a real-time and global optimization process. The cloud computing layer, which is the top layer, acts as a control center and optimizes the parameters of the fog layer and the edge layer. The proposed strategy uses the Deep Q-Learning algorithm for the optimization process in all three layers. This study employs the SUMO traffic simulator for performance evaluation. These results are compared with the results of adaptive traffic control methods. The output of this study shows that the proposed model can reduce waiting times and travel times while increasing travel speed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Novel Adaptive Traffic Signal Control Based on Cloud/Fog/Edge Computing


    Weitere Titelangaben:

    Int. J. ITS Res.


    Beteiligte:


    Erscheinungsdatum :

    01.12.2022


    Format / Umfang :

    12 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Intelligent edge computing device with adaptive traffic signal control capability and control method

    GUAN QING / ZHOU YUANYUAN / QIAN XIAOYU | Europäisches Patentamt | 2025

    Freier Zugriff

    Traffic signal lamp light control system based on cloud computing

    ZHAO HUANPING / CUI YULIAN / XUE DANGQIN | Europäisches Patentamt | 2020

    Freier Zugriff


    Cloud – based Adaptive Traffic Signal System using Amazon AWS

    Mosus Jorden, S / Naveenkumar, G / Anita Rose, J.T. | IEEE | 2024


    Intelligent traffic communication signal processing system based on cloud computing

    ZHOU ZIQUAN | Europäisches Patentamt | 2020

    Freier Zugriff