The implementation of artificial intelligence (AI) systems in automotive software development still is an obstacle. Despite of accelerating scientific research and big wins in this field, the practical application is only possible in restricted environments or non safety critical components. There is a need to develop methods to verify the robustness and safety of AI software modules. The data based generation of deep learning (DL) algorithms creates black box models, which properties inhibit a validation as it is done for deterministic algorithms following ISO 26262. This paper introduces methods to assess the plausibility of AI model outputs. A description of the training data domains for a robust training is accomplished by means of one-class support vector machines (OCSVMs). This anomaly detection process encloses valid data within a DB, to be able to verify model outputs during operation. A further categorization of the training data domain into 20, equally spaced sub-domains led to best results in detecting implausible model calculations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Plausibility Assessment and Validation of Deep Learning Algorithms in Automotive Software Development


    Weitere Titelangaben:

    Proceedings


    Beteiligte:
    Bargende, Michael (Herausgeber:in) / Reuss, Hans-Christian (Herausgeber:in) / Wagner, Andreas (Herausgeber:in) / Korthals, Felix (Autor:in) / Stöcker, Marcel (Autor:in) / Rinderknecht, Stephan (Autor:in)


    Erscheinungsdatum :

    14.05.2021


    Format / Umfang :

    15 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Deutsch




    Plausibility Assessment and Validation of Deep Learning Algorithms in Automotive Software Development

    Korthals, Felix / Stöcker, Marcel / Rinderknecht, Stephan | TIBKAT | 2021


    Plausibility checking method

    SIEMENS ANTON | Europäisches Patentamt | 2015

    Freier Zugriff


    Trailer angle detection target plausibility

    LAVOIE ERICK MICHAEL | Europäisches Patentamt | 2016

    Freier Zugriff

    Vehicular dynamics based plausibility checking

    Yavvari, Chaitanya / Duric, Zoran / Wijesekera, Duminda | IEEE | 2017