In recent years, the widespread adoption of autonomous vehicle, advanced driver assistant systems (ADAS) have acquired great interests as it provides safe and better driving by automating, adapting, and enhancing the driving experience. Road accidents can be avoided with the identification of various road infrastructures such as merging or splitting lanes as well as ending lanes must be well detected, providing a driver with a more convenient and safe intelligent function. However, the image for lane detection failed to be detected due to the visibility of image is affected because it may consist of noise, occlusion, undesired background blur and the image pixels. To predict the lane markers on road pavement correctly, a robust lane classification system using deep learning approach requires guidance so that it can detect significantly. Four significant operations involve in developing the system which are data acquisition, data pre-processing, data training and data testing. In this study, an improved classification algorithm using deep learning specifically convolutional neural network is used to detect the lane markers. The big dataset consists of 5000 images. It is distributed into are 4000 images as training data, 700 images as validation data and 300 images as testing data respectively. For the evaluation of lane detection system, the evaluation metrics are in terms of accuracy, false positive (FP) and false negative (FN). The accuracy of the lane classification system network is 91.97%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Universiti Malaysia Pahang Autonomous Shuttle Development: Lane Classification Analysis Using Convolutional Neural Network (CNN)


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Khairuddin, Ismail Mohd. (Herausgeber:in) / Abdullah, Muhammad Amirul (Herausgeber:in) / Ab. Nasir, Ahmad Fakhri (Herausgeber:in) / Mat Jizat, Jessnor Arif (Herausgeber:in) / Mohd. Razman, Mohd. Azraai (Herausgeber:in) / Abdul Ghani, Ahmad Shahrizan (Herausgeber:in) / Zakaria, Muhammad Aizzat (Herausgeber:in) / Mohd. Isa, Wan Hasbullah (Herausgeber:in) / Abdul Majeed, Anwar P. P. (Herausgeber:in) / Yee, Lee Yin (Autor:in)


    Erscheinungsdatum :

    15.05.2022


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Autonomous Shuttle Development at Universiti Malaysia Pahang: LiDAR Point Cloud Data Stitching and Mapping Using Iterative Closest Point Cloud Algorithm

    Zakaria, Muhammad Aizzat / Kunjunni, Baarath / Peeie, Mohamad Heerwan Bin et al. | Springer Verlag | 2021


    The Aerospace Program at Universiti Sains Malaysia

    Said, A. b. H. M. / COSPAR / Institute of Aeronautics and Astronautics et al. | British Library Conference Proceedings | 1999


    Reengineering sustainability at Universiti Tun Hussein Onn Malaysia (UTHM): travel & transportation

    Razally Wahid / Sulaiman Noralfishah / Md. Rohani Munzilah et al. | DOAJ | 2018

    Freier Zugriff


    Convolutional neural network automobile lane changing auxiliary system

    ZHANG KUNLIN / BAI GANG / YANG CHANGJIE et al. | Europäisches Patentamt | 2025

    Freier Zugriff