Balancing a bicycle through steering is similar to balancing an inverted pendulum, with a travel-speed-dependent pivot point. This paper derives a speed-dependent balancing controller for a self-balancing bicycle. This controller is based on an identified gray box model. The identification procedure is formulated as a weighted least squares problem with the time-varying parameter of the model. Identification data was generated on a controlled bicycle robot. Excitation experiments were designed to account for the unstable nature of the problem. Based on this identified model, a gain-scheduled controller is derived for a speed-independent closed-loop performance for a speed range. The controller is further implemented on the bicycle and tested for a set of speeds. Tests performed on the bicycle illustrate the gain-scheduled controller’s performance gain.
Gain-Scheduled Bicycle Balance Controller Based on System Identification
Lect.Notes Mechanical Engineering
Advanced Vehicle Control Symposium ; 2024 ; Milan, Italy September 01, 2024 - September 05, 2024
04.10.2024
7 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Gain Scheduled Active Steering Control Based on a Parametric Bicycle Model
British Library Conference Proceedings | 2007
|A Software Environment for Gain Scheduled Controller Design
British Library Online Contents | 1998
|