Abstract A key success factor when realizing autonomous vehicles is the validation of their functionality. Due to their system architecture involving multiple environmental sensors, such as video cameras and LIDAR sensors, the input vector into the Advanced Driver Assistance System (ADAS) is high dimensional. The signal processing has to reliably execute the perception and cognition of the current driving situation. The environment consists of an arbitrary number of elements, including traffic participants, material properties, weather conditions, road signs or buildings. Based on the availability of a semantic, machine-readable representation of scenarios, such driving situations can be described. This allows the realization of a continuously growing test case database for the validation of autonomous driving functions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Systematically Generated and Complete Tests for Complex Driving Scenarios


    Beteiligte:
    Habiger, Marc (Autor:in) / Feilhauer, Marius (Autor:in) / Häring, Jürgen (Autor:in)


    Erscheinungsdatum :

    01.01.2019


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Deutsch




    Ship Model Tests in Ice with Systematically Varied Ice Parameters

    Ilves, L. / Eskola, H. / International Association for Hydraulic Research et al. | British Library Conference Proceedings | 1990


    Towards Procedures for Systematically Deriving Hybrid Models of Complex Systems

    Mosterman, P. J. / Biswas, G. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2000

    Freier Zugriff


    Systematically testing optical MEMS speeds production

    Cellucci, T. A. | British Library Online Contents | 2001


    Upgrading of highways for safety -- Systematically

    Lee, B. / Cantilli, E.J. | Engineering Index Backfile | 1968