Drones and Unmanned Aerial Vehicles (UAVs) are one of the cheapest and most difficult to counter aerial vehicles inducing security and safety concerns in many sectors. Recent events suggest that traditional detection technologies such as radar are not effective for detecting these vehicles despite the huge investments from countries suffering from various drone attacks. Current technologies often rely on data such as images to detect and locate drones in the sky using advanced AI-based approaches. Given these challenges, the global aim of this research is to evaluate the effectiveness of various deep learning-based object detection methods on the task of visually detecting airborne drones from camera feeds. We mostly compare single-stage, two-stage, and anchor-free object recognition methods in terms of recognition performance and speed. As per the data, we use as a common benchmark; the Anti-UAV dataset presented at the ICCV 2021 conference. From the results, we see that anchor-free models perform better compared to the other methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evaluation of Single-Stage, Two-Stage, and Anchor-Free Object Recognition Methods for UAV Detection


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Nagar, Atulya K. (Herausgeber:in) / Singh Jat, Dharm (Herausgeber:in) / Mishra, Durgesh Kumar (Herausgeber:in) / Joshi, Amit (Herausgeber:in) / Al Romaihi, Rashed Khamis (Autor:in) / Belhi, Abdelhak (Autor:in) / Hadjidj, Rachid (Autor:in)


    Erscheinungsdatum :

    01.01.2023


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Anchor-free one-stage detector for unmanned aerial vehicle

    Li, Haihan / Zhang, Qiang / Zhao, Wenchao et al. | SPIE | 2020


    Analysis of Anchor-Based and Anchor-Free Object Detection Methods Based on Deep Learning

    Liu, Shujian / Zhou, Haibo / Li, Chenming et al. | British Library Conference Proceedings | 2020



    DST3D: DLA-Swin Transformer for Single-Stage Monocular 3D Object Detection

    Wu, Zhihong / Jiang, Xin / Xu, Ruidong et al. | IEEE | 2022