For autonomous vehicles to drive safely, it is crucial to predict motion of other vehicles as well as to detect. The motion of the vehicle is affected by the location of other vehicles, road environments, and vehicle dynamics. In this paper, we propose a deep learning-based network that combines convolutional neural network (CNN) and Sequence-to-Sequence (Seq2Seq) for trajectory prediction. In order to encode the location of other vehicles and road environment information, raster images of surrounding vehicles and High-definition (HD) maps are taken as input of CNN. Also, the vehicle’s history positions and CNN features are taken as input of Seq2Seq since it implies vehicle’s motion and dynamics. Therefore, CNN extracts the traffic context and Seq2Seq encodes the vehicle’s motion and predicts the future position. We evaluate our method on Lyft dataset and show the prediction accuracy is improved compared to other methods. When the past 1 s path is given and the future 3 s path is predicted, the mean square error for the final horizon is 2.15, which is almost twice less than GRIP. In addition, our method runs at 25 ms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Trajectory Prediction with Convolutional Neural Network and Sequence-to-Sequence


    Weitere Titelangaben:

    Lect.Notes Mechanical Engineering


    Beteiligte:
    Chew, Esyin (Herausgeber:in) / P. P. Abdul Majeed, Anwar (Herausgeber:in) / Liu, Pengcheng (Herausgeber:in) / Platts, Jon (Herausgeber:in) / Myung, Hyun (Herausgeber:in) / Kim, Junmo (Herausgeber:in) / Kim, Jong-Hwan (Herausgeber:in) / Kim, Hyungi (Autor:in) / Shim, David Hyunchul (Autor:in)

    Erschienen in:

    RiTA 2020 ; Kapitel : 13 ; 109-114


    Erscheinungsdatum :

    05.08.2021


    Format / Umfang :

    6 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Trajectory Prediction for Vehicle Conflict Identification at Intersections Using Sequence-to-Sequence Recurrent Neural Networks

    Abdelraouf, Amr / Abdel-Aty, Mohamed / Wang, Zijin et al. | ArXiv | 2022

    Freier Zugriff

    SEQUENCE-TO-SEQUENCE PREDICTION OF VEHICLE TRAJECTORY VIA LSTM ENCODER-DECODER ARCHITECTURE

    Park, Seong Hyeon / Kim, ByeongDo / Kang, Chang Mook et al. | British Library Conference Proceedings | 2018


    Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture

    Park, Seong Hyeon / Kim, ByeongDo / Kang, Chang Mook et al. | IEEE | 2018



    Peripheral vehicle behavior recognition and trajectory prediction method based on cyclic convolutional neural network

    GAO HONGBO / HE XI / ZHU JUPING et al. | Europäisches Patentamt | 2023

    Freier Zugriff