Bayesian variable selection is one of the popular topics in modern day statistics. It is an important tool for high dimensional statistics, where the number of model parameters is greater than the number of observations. Several Bayesian models have been proposed for variable selection. However, a convincing robust Bayesian approach is yet to be investigated. Here in this work, we investigate sensitivity analysis over a simplex of probability measures. We sample from this simplex to get an inclusion probability of each variable. The sensitivity analysis gives us a set of posteriors instead of a single posterior. This set of posteriors gives us a behaviour of the model parameters with respect to different prior elicitations resulting in robust inferential conclusions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bayesian Adaptive Selection Under Prior Ignorance


    Weitere Titelangaben:

    Space Technol.Proceedings


    Beteiligte:

    Kongress:

    International Conference on Uncertainty Quantification & Optimisation ; 2020 ; Brussels, Belgium November 17, 2020 - November 20, 2020



    Erscheinungsdatum :

    16.07.2021


    Format / Umfang :

    14 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Bayesian Adaptive Selection Under Prior Ignorance

    Basu, Tathagata / Troffaes, Matthias C.  M. / Einbeck, Jochen | TIBKAT | 2021


    Transport network planning under ignorance

    O'sullivan, Patrick / Holtzclaw, Gary | Taylor & Francis Verlag | 1980


    Recognizing Ignorance

    R. J. Greene | NTIS | 1988


    On recognizing ignorance

    Greene, Richard J. | NTRS | 1988


    Nonlocal Prior Bayesian Tomographic Reconstruction

    Chen, Y. | British Library Online Contents | 2008