Abstract This article examines the capability of Least Square Support Vector Machine (LSSVM) and Relevance Vector Machine (RVM) for determination of compressive strength (f c ) of self compacting concrete. The input variables of LSSVM and RVM are Cement (kg/m3)(C), Fly ash (kg/m3)(F), Water/powder (w/p), Superplasticizer dosage (%)(SP) Sand (kg/m3)(S) and Coarse Aggregate (kg/m3)(CA). The output of LSSVM and RVM is f c . The developed LSSVM and RVM give equations for prediction of f c . A comparative study has been done between the developed LSSVM, RVM and ANN models. Experiments have been conducted to verify the developed RVM and LSSVM. The developed RVM gives variance of the predicted f c . The results confirm that the developed RVM is a robust model for prediction of f c of self compacting concrete.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    20.06.2014


    Format / Umfang :

    6 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine

    Aiyer, Bhairevi Ganesh / Kim, Dookie / Karingattikkal, Nithin et al. | Online Contents | 2014


    Least Square Littlewood-Paley Wavelet Support Vector Machine

    Wu, F.-f. / Zhao, Y.-l. | British Library Online Contents | 2005


    Multi-Scale Short Term Load Prediction Model Using Least Square Support Vector Machine

    Zunxiong, L. / Hualan, Z. / Deyun, Z. | British Library Online Contents | 2005


    Research on the Prediction Model of Traffic Accidents Using the Least Square Support Vector Machine

    Zhang, W.-h. / Sun, Q. / Sun, H. | British Library Conference Proceedings | 2009