Vehicle re-identification is the process of matching automobiles from one place on the road (one field of vision) to the next. Important traffic characteristics like the trip duration, travel time variability, section density, and partial dynamic origin/destination needs may be acquired by performing vehicle re-identification. However, doing so without using number plates has become challenging since cars experience substantial variations in attitude, angle of view, light, and other factors, all of which have a major influence on vehicle identification performance. To increase each model’s representation ability as much as feasible, we apply a variety of strategies that will bring a major change like using filter grafting, semi-supervised learning, and multi-loss. The tests presented in this paper show that such strategies are successful in addressing challenges within this space.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Re-identification Using Convolutional Neural Networks


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Chinara, Suchismita (Herausgeber:in) / Tripathy, Asis Kumar (Herausgeber:in) / Li, Kuan-Ching (Herausgeber:in) / Sahoo, Jyoti Prakash (Herausgeber:in) / Mishra, Alekha Kumar (Herausgeber:in) / Kedkar, Nirmal (Autor:in) / Karthik Reddy, Kotla (Autor:in) / Arya, Hritwik (Autor:in) / Sunil, Chinnahalli K (Autor:in) / Patil, Nagamma (Autor:in)


    Erscheinungsdatum :

    28.06.2023


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Wireless Channel Scenario Identification Using Convolutional Neural Networks

    Gopal, Govind R. / Chen, Jie / Hillery, William J. et al. | IEEE | 2023


    Identification of Citrus Trees from Unmanned Aerial Vehicle Imagery Using Convolutional Neural Networks

    Ovidiu Csillik / John Cherbini / Robert Johnson et al. | DOAJ | 2018

    Freier Zugriff

    Road Identification using Convolutional Neural Network on Autonomous Electric Vehicle

    Hermawan, Markus / Husin, Zaenal / Hikmarika, Hera et al. | IEEE | 2021


    Automated Vehicle Recognition with Deep Convolutional Neural Networks

    Adu-Gyamfi, Yaw Okyere / Asare, Sampson Kwasi / Sharma, Anuj et al. | Transportation Research Record | 2017


    Driver identification using 1D convolutional neural networks with vehicular CAN signals

    Hu, Hongyu / Liu, Jiarui / Gao, Zhenhai et al. | Wiley | 2020

    Freier Zugriff