This study concentrates on adaptive fault tolerant consensus problem for nonlinear strict-feedback systems with actuator faults and disturbances under directed graphs. Neural networks functions are utilized to approximated system uncertainties. For neural networks approximation theory, the unknown smooth function can only be approximated on a compact set. Therefore, based on supervisory control strategy and theoretic analysis, the system state signals can converge to compact sets over time. Moreover, the impact of approximation errors and actuator faults are compensated effectively by adopting adaptive terms. The simulation result of the simplified aircraft’s longitudinal system is given to show the validity of the designed consensus protocol.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Fault Tolerant Supervisory Consensus Control for Nonlinear Strict-Feedback Multiagent Systems


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Yu, Xiang (Herausgeber:in) / Gong, Jianye (Autor:in) / Jiang, Bin (Autor:in) / Ma, Yajie (Autor:in)


    Erscheinungsdatum :

    30.10.2021


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch