The environment perception in a complex battlefield by the swarm of unmanned aerial vehicles (UAV) have increased considerably in the last few years, which focuses on the detection, identification and tracking of maneuver targets with arbitrary number. This paper proposed a passive collaborative multi-target identification and tracking method for the surveillance of UAV swarm to ground maneuver targets, which based the YOLOX architecture and Labeled Multi-Bernoulli (LMB) filtering algorithm. The vision process of each sensor or camera segmented and identified the targets with the neural network of YOLOX and calculated the two measurement angles by the affine transformation. Considering the perspective divergence observed by the different passive sensors of UAVs, the trajectories association of multi-target from the sensors is considered with Gaussian Mixture LMB (GM-LMB) filter which could decrease the calculation complexity and relevancy uncertainty. The results of mathematical simulation indicate that the GM-LMB filter could compensate the tracking position error compared with Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-target Collaborative Identification and Tracking of UAV Swarm with Passive Sensors


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Qu, Yi (Herausgeber:in) / Gu, Mancang (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Fu, Wenxing (Herausgeber:in) / Sun, Wenjie (Autor:in) / Lu, Xiaodong (Autor:in) / Zhang, Siman (Autor:in) / Yu, Zexuan (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2023 ; Nanjing, China September 09, 2023 - September 11, 2023



    Erscheinungsdatum :

    18.04.2024


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch