Zusammenfassung Many present-day’s vehicles are equipped with adaptive cruise control systems (ACC). The purpose of these systems is to keep a desired vehicle speed or distance towards a preceding object vehicle, if existing. Yet, present ACC systems do not consider the vehicle’s fuel consumption in a satisfactory way. For example, while platooning, a lot of fuel is wasted by vehicle drivers who imitate their respective preceding vehicles’ speed profiles. In contrast, copying these speed variations is not necessary, as it does not decrease the overall travel time but increases the fuel rate. Instead, allowing a dynamic distance towards an object vehicle decreases the subject vehicle’s fuel consumption because the engine can be run in fuel efficient operating points for a longer length of time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Model Predictive Approach for a Fuel Efficient Cruise Control System


    Beteiligte:


    Erscheinungsdatum :

    01.01.2012


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Deutsch




    A Simplified Fuel Efficient Predictive Cruise Control Approach

    Schmied, Roman / Waschl, Harald / del Re, Luigi | British Library Conference Proceedings | 2015


    A Simplified Fuel Efficient Predictive Cruise Control Approach

    Waschl, Harald / del Re, Luigi / Schmied, Roman | SAE Technical Papers | 2015


    Fuel Efficient Predictive Cruise Control for Commercial Vehicles with Load Variation

    Zhang, Fawang / Yin, Yuming / Li, Shengbo Eben et al. | TIBKAT | 2022


    Fuel Efficient Predictive Cruise Control for Commercial Vehicles with Load Variation

    Zhang, Fawang / Yin, Yuming / Li, Shengbo Eben et al. | Springer Verlag | 2022


    Fuel Efficient Predictive Cruise Control for Commercial Vehicles with Load Variation

    Zhang, Fawang / Yin, Yuming / Li, Shengbo Eben et al. | British Library Conference Proceedings | 2022