Abstract Black and white films were the main form of human culture records before. Colorization of those films is creative. At present, Colorization of black and white films is still handmade which is expensive and time consuming. In this paper, a framework based on CNN and particle filter tracking algorithm is proposed, which can color black and white video and try to solve the problem of dynamic frame based on context correlation. At the same time, the objective function of CNN structure and particle filter tracking are optimized. The result of colorization on videos is satisfactory.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Video Coloring Method Based on CNN and Feature Point Tracking


    Beteiligte:
    Guan, George (Autor:in) / Zhang, Fuquan (Autor:in) / Ding, Gangyi (Autor:in) / Niu, Meng (Autor:in) / Xu, Lin (Autor:in)


    Erscheinungsdatum :

    03.11.2017


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Coloring Local Feature Extraction

    van de Weijer, J. / Schmid, C. | British Library Conference Proceedings | 2006



    Motion Tracking of Dense Feature Point Sets

    Chetverikov, D. / Verestoy, J. / Austrian Association for Pattern Recognition | British Library Conference Proceedings | 1997


    A Scale Adaptive Tracking Algorithm Based on Feature Point Fitting

    Yang, Xizhong / Zhang, Ling / Sun, Yongrong | Springer Verlag | 2025