The sharp increase in railway passenger flow during the Spring Festival Travel Season has tested the organization and dispatching ability of the railway transportation system. In this paper, the advantages of least square support vector machine (LSSVM) in small sample data prediction are integrated, and the ARIMA-LSSVM hybrid model based on residual linear transfer superposition is proposed, which is verified by Xiamen Spring Festival railway passenger flow. The analysis results show that the average absolute errors of hybrid model are 0.565 × 104 and 0.979 × 104 person times, respectively, which are 22.50% and 12.43% higher than ARIMA model, and 28.30% and 18.35% higher than LSSVM model. This study plays a positive role in improving the railway passenger flow forecasting ability and adjusting the preparation time during the Spring Festival Travel Season.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modeling and Analysis of Railway Passenger Flow Forecast During the Spring Festival


    Weitere Titelangaben:

    Smart Innovation, Systems and Technologies


    Beteiligte:
    Ni, Shaoquan (Herausgeber:in) / Wu, Tsu-Yang (Herausgeber:in) / Geng, Jingchun (Herausgeber:in) / Chu, Shu-Chuan (Herausgeber:in) / Tsihrintzis, George A. (Herausgeber:in) / Zhang, Zhi-Cheng (Autor:in) / Chen, Ding (Autor:in) / Jiang, Pei-Zhou (Autor:in)


    Erscheinungsdatum :

    15.05.2023


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch







    Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model

    Dou, Fei / Jia, Limin / Wang, Li et al. | Tema Archiv | 2014


    Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model

    Fei Dou / Limin Jia / Li Wang et al. | DOAJ | 2014

    Freier Zugriff