Transportation is one of the key areas for energy consumption and greenhouse gas emissions (GHG emissions). Road freight transportation is the core part in CO2 emissions but difficult to calculate due to strong liquidity characteristics. Based on the dynamic data of heavy-duty trucks Global Positioning System (GPS), this research adopts big data processing and establishes road freight market green index model that reflects the road freight green development. Also, the paper do the case study to analyze the green development of road freight across different provinces, providing quantitative support for energy reduction and emission reduction of road freight market.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    The Road Freight Industry Green Research Based on Big Data of Heavy-Duty Trucks Operation


    Weitere Titelangaben:

    Advances in Engineering res


    Beteiligte:
    Zhao, Gaofeng (Herausgeber:in) / Satyanaga, Alfrendo (Herausgeber:in) / Ramani, Sujatha Evangelin (Herausgeber:in) / Abdel Raheem, Shehata E. (Herausgeber:in) / Wang, Xinzi (Autor:in) / Zhao, Nanxi (Autor:in) / Tang, Junzhong (Autor:in) / Chen, Lian (Autor:in)

    Kongress:

    International Symposium on Traffic Transportation and Civil Architecture ; 2024 ; Tianjin, China June 21, 2024 - June 23, 2024



    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    The research on the carbon footprint of road freight market based on dynamic data of heavy-duty trucks

    Wang, Xinzi / Xiao, Rongna / Zhao, Nanxi | British Library Conference Proceedings | 2023


    Conductive Electric Road System for Heavy-Duty Trucks

    Tajima, Takamitsu / Sato, Kouichi / Noguchi, Wataru et al. | British Library Conference Proceedings | 2022


    Conductive Electric Road System for Heavy-Duty Trucks

    Shigi, Hiroka / Abe, Hiroyuki / Sato, Kouichi et al. | SAE Technical Papers | 2022