Abstract Doubly stochastic Poisson processes whose unobservable intensity is a shot-noise process with random amplitude arise when each event of a primary Poisson process generates a random number of subsidiary events. We derive a stochastic partial differential equation for the unnormalized conditional moment generating function. This equation can be used for recursive compution of the minimum variance estimator of the unobservable intensity as well as the likelihood ratio with respect to the reference measure, on the basis of point process observations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Nonlinear estimation problems of poisson cluster processes


    Beteiligte:
    Konecny, Franz (Autor:in)


    Erscheinungsdatum :

    01.01.1986


    Format / Umfang :

    7 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Integrated Clutter Estimation and Target Tracking using Poisson Point Processes

    Chen, X. / Tharmarasa, R. / Pelletier, M. et al. | IEEE | 2012


    Error probabilities for maximum likelihood detection of M-ary Poisson processes in Poisson noise

    Karp, Sherman / Hurwitz, Martin G. / Gagliardi, Robert M. | TIBKAT | 1968