This paper introduces a novel extended Kalman filter (EKF) approach for the pose estimation of a cable driven parallel robot (CDPR). The filter fuses accelerometer, rate gyroscope, and winch encoder data through a dynamically-updated covariance on the forward kinematics pose estimation error. The filter is tested on experimental data collected by a six degree-of-freedom CDPR test bed. The results show that the EKF is capable of providing similar pose estimation accuracy compared to forward kinematics alone, but with much lower covariance on the estimation error (i.e., much greater confidence in the pose estimate).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pose Estimation of a Cable-Driven Parallel Robot Using Kalman Filtering and Forward Kinematics Error Covariance Bounds


    Weitere Titelangaben:

    Mechan. Machine Science


    Beteiligte:
    Larochelle, Pierre (Herausgeber:in) / McCarthy, J. Michael (Herausgeber:in) / Puri, Neel (Autor:in) / Caverly, Ryan James (Autor:in)

    Kongress:

    USCToMM Symposium on Mechanical Systems and Robotics ; 2022 ; Rapid City, SD, USA May 19, 2022 - May 21, 2022



    Erscheinungsdatum :

    01.04.2022


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch