In this letter, we focus on the problem of the movement of aerial robot swarms, and how to achieve coordinated and consistent flight of drone swarms in unfamiliar environments. Inspired by the behavior of biological swarms, a distributed and adaptive swarm flight algorithm is designed by adding a physical model to the starling swarm collaboration algorithm. The algorithm makes the whole cluster have excellent environmental adaptability and cluster scalability by formulating different behaviors of UAVs. And the algorithm of this paper is used to simulate the behavior of UAV swarms to achieve simple goals in a three-dimensional environment. The results show that the algorithm is reliable and effective in UAV swarm control.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Optimized Flocking Starling Algorithm for Autonomous Drones


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Fu, Wenxing (Herausgeber:in) / Gu, Mancang (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Chen, Fayin (Autor:in) / Tang, Yong (Autor:in) / Hu, Yiwen (Autor:in) / Wang, Tao (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2022 ; Xi'an, China September 23, 2022 - September 25, 2022



    Erscheinungsdatum :

    10.03.2023


    Format / Umfang :

    8 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    UAV Swarm Path Planning Algorithm Based on Starling Flocking

    Zhang, Ming / Hu, Yi / Liu, Xiangchun et al. | IEEE | 2024


    Hierarchical Weighting Vicsek Model for Flocking Navigation of Drones

    Xingyu Liu / Xiaojia Xiang / Yuan Chang et al. | DOAJ | 2021

    Freier Zugriff


    Flocking of Autonomous Air Vehicles

    Crowther, W. / Riviere, X. | British Library Conference Proceedings | 2002


    Flocking Model for Autonomous Aircraft

    Gainutdinova, T. Yu. / Gainutdinova, A. V. / Trusfus, M. V. et al. | Springer Verlag | 2020