Making up for the lack of generalization and environmental simulation of traditional algorithms, a motion planning method of space manipulator based on reinforcement learning is designed. First, the standard Denavit-Hartenberg(DH) model of space manipulator is given. Further, combined with the characteristics of the space mission, the state space, action space and reward functions are designed. The Proximal Policy Optimization(PPO) is used as the framework to realize the motion planning task of the space manipulator. ISAAC GYM is chosed as the simulation platform to improve the training speed and strategy generalization ability through the setting of multiagent training and environment randomization at the same time. The simulation results show that the proposed method can realize the task of grasping the object by avoiding obstacles in the case of space microgravity, and the method has strong practicability and effectiveness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Obstacle Avoidance Motion Planning of Space Manipulator Based on Reinforcement Learning


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Deng, Yimin (Herausgeber:in) / Zhang, Zixuan (Autor:in) / Dong, Wei (Autor:in) / Wang, Chunyan (Autor:in) / Sun, Jing (Autor:in)

    Kongress:

    International Conference on Guidance, Navigation and Control ; 2024 ; Changsha, China August 09, 2024 - August 11, 2024



    Erscheinungsdatum :

    05.03.2025


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    A Connectionist System for Learning Robot Manipulator Obstacle-Avoidance Capabilities in Path Planning

    Martin, P. / Del Pobil, A. P. / IEEE et al. | British Library Conference Proceedings | 1994


    The Algorithm for UAV Obstacle Avoidance and Route Planning Based on Reinforcement Learning

    Liu, Jiantong / Wang, Zhengjie / Zhang, Zhide | Springer Verlag | 2019


    The Algorithm for UAV Obstacle Avoidance and Route Planning Based on Reinforcement Learning

    Liu, Jiantong / Wang, Zhengjie / Zhang, Zhide | TIBKAT | 2020


    Predictive Motion Planning with Pipelined Feature-Based Obstacle Avoidance

    Seiferth, Christoph / Joos, Alexander / Frangenberg, Michael et al. | AIAA | 2015