As the dynamics of travel demands continue to shift, the accurate prediction of traffic conditions has become increasingly critical. This paper comprehensively charts the evolution of traffic flow prediction methodologies through four distinct phases. Initially, the focus was on assumptions and statistical methods. The second stage advanced to data-driven approaches with in-depth analysis of traffic data. Subsequently, machine and deep learning techniques were introduced, utilizing historical data for future predictions. The current stage explores the potential of Artificial Intelligence Generative Content (AIGC) approaches, including reinforcement learning and generative models for more precise strategies. This paper provides a structured reference for the field, outlining significant literature and advancements in traffic flow prediction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    AIGC in Urban Traffic: A Paradigm Shift in Large-Scale State Estimation


    Weitere Titelangaben:

    Smart Innovation, Systems and Technologies


    Beteiligte:
    Gao, Kun (Herausgeber:in) / Bie, Yiming (Herausgeber:in) / Howlett, R. J. (Herausgeber:in) / Jain, Lakhmi C. (Herausgeber:in) / Zhao, Danqi (Autor:in) / Qiu, Hanyi (Autor:in) / Xu, Mingxing (Autor:in) / Wang, Liang (Autor:in)

    Kongress:

    Proceedings of KES-STS International Symposium ; 2024 ; Madeira, Portugal June 19, 2024 - June 21, 2024



    Erscheinungsdatum :

    22.09.2024


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Framework for Large-Scale Urban Traffic State Estimation Based on AIGC

    Lin, Hongyi / Liu, Jiahui / Qiu, Hanyi et al. | Springer Verlag | 2024



    Efficient Traffic State Estimation for Large-Scale Urban Road Networks

    Kong, Qing-Jie / Zhao, Qiankun / Wei, Chao et al. | IEEE | 2013