In random bin picking, grasps on a workpiece are often defined manually, which requires extensive time and expert knowledge. In this paper, we propose a method that generates and prioritizes grasps for vacuum and magnetic grippers by analyzing the CAD model of a workpiece and gripper geometry. Using projections of these models, heatmaps such as the overlap of gripper and workpiece, the center of gravity, and the surface smoothness are generated. To get a combined heatmap, which estimates the probability for a successful grip, all individual heatmaps are fused by means of a weighted sum. Grid-based sampling generates prioritized grasps and suggests the most suitable gripper automatically. This approach increases the autonomy of bin picking significantly.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic Grasp Generation for Vacuum Grippers for Random Bin Picking


    Weitere Titelangaben:

    ARENA2036


    Beteiligte:
    Weißgraeber, Philipp (Herausgeber:in) / Heieck, Frieder (Herausgeber:in) / Ackermann, Clemens (Herausgeber:in) / Khalid, Muhammad Usman (Autor:in) / Spenrath, Felix (Autor:in) / Mönnig, Manuel (Autor:in) / Moosmann, Marius (Autor:in) / Bormann, Richard (Autor:in) / Kunz, Holger (Autor:in) / Huber, Marco F. (Autor:in)


    Erscheinungsdatum :

    02.06.2021


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Automatic Grasp Generation for Vacuum Grippers for Random Bin Picking

    Khalid, Muhammad Usman / Spenrath, Felix / Mönnig, Manuel et al. | TIBKAT | 2021


    Optimal grasp of vacuum grippers with multiple suction cups

    Mantriota, Giacomo | Online Contents | 2007


    Grasp Planning for Parallel Grippers Considering Flexibility on Its Grasping Surface

    Harada, K. / Tsuji, T. / Nagata, K. et al. | British Library Online Contents | 2012



    Generation of Synthetic AI Training Data for Robotic Grasp-Candidate Identification and Evaluation in Intralogistics Bin-Picking Scenarios

    Holst, Dirk / Schoepflin, Daniel / Schüppstuhl, Thorsten | Springer Verlag | 2022

    Freier Zugriff