As the volume of vehicles on our roads continues to surge, accurate detection and counting of vehicles have become critical for effective traffic management. Identifying vehicles precisely is challenging due to the wide range of sizes, shapes, and external factors influencing computer vision. To overcome these challenges, here propose a vehicle detection strategy based on the YOLOv5 algorithm. YOLOv5 is an advanced object detection algorithm leveraging convolutional neural networks (CNNs) for high-precision, high-speed detection in images and videos. Our strategy harnesses YOLOv5’s capabilities, optimizing it for both speed and accuracy. Comprising convolutional layers, pooling layers, and fully connected layers, YOLOv5 collaboratively detects and identifies vehicles in images or video frames. Extensive training on a diverse dataset empowers the algorithm to recognize vehicles with exceptional precision. An empirical study evaluated YOLOv5’s performance across diverse vehicle types and environmental conditions. Results unequivocally demonstrated substantial improvements in vehicle detection speed and precision. Even under challenging scenarios, the algorithm consistently achieved real-time identification and enumeration of vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improving Traffic Surveillance with Deep Learning Powered Vehicle Detection, Identification, and Recognition


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Joshi, Amit (Herausgeber:in) / Mahmud, Mufti (Herausgeber:in) / Ragel, Roshan G. (Herausgeber:in) / Karthik, S. (Herausgeber:in) / Patel, Priyanka (Autor:in) / Mav, Rinkal (Autor:in) / Mehta, Pratham (Autor:in) / Mer, Kamal (Autor:in) / Kanani, Jeel (Autor:in)

    Kongress:

    International Conference on Information and Communication Technology for Competitive Strategies ; 2023 ; Jaipur, India December 08, 2023 - December 09, 2023



    Erscheinungsdatum :

    18.04.2024


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Robust Real-Time Traffic Surveillance with Deep Learning

    Jessica Fernández / José M. Cañas / Vanessa Fernández et al. | DOAJ | 2021

    Freier Zugriff


    Traffic Sign Detection and Recognition using Deep Learning

    Oza, Rudri Mahesh / Geisen, Angelina / Wang, Taehyung | IEEE | 2021


    Traffic Sign Detection and Recognition Using Deep Learning

    Kumar, P. Puneeth / Kishen, R. C. / Ravikumar, M. | Springer Verlag | 2022


    Traffic signs recognition with deep learning

    Yasmina, Djebbara / Karima, Rebai / Ouahiba, Azouaoui | IEEE | 2018