This study focuses on the development of entry capacity models for roundabouts by using Genetic Algorithm (GA), Multi-variate Adaptive Regression spline (MARS) and Random Forest Regression (RFR) technique under heterogeneous traffic conditions. Required data were collected from 27 selected roundabouts of India by using high-definition video (HD) camera. Influence area for gap acceptance (INAGA) method is employed to find out the critical gap and follow up time. It is found from sensitivity analysis that variable like Entry width (Ew) contributes the most while the follow-up time (Tf) variable has less contribution in the proposed model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparison of Artificial Intelligence Based Roundabout Entry Capacity Models


    Weitere Titelangaben:

    Int. J. ITS Res.


    Beteiligte:


    Erscheinungsdatum :

    01.05.2020


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Models of Roundabout Lane Capacity

    Yok Hoe Yap | Online Contents | 2015


    Models of Roundabout Lane Capacity

    Yap, Yok Hoe / M. Gibson, Helen / J. Waterson, Ben | ASCE | 2015


    Models of Roundabout Lane Capacity

    M. Gibson, Helen | Online Contents | 2015


    The effect of Pelican crossings on roundabout entry capacity

    Hunt, J. / Jabbar, J. A. | British Library Online Contents | 1995


    Models of Roundabout Lane Capacity

    Yap, Yok Hoe / Gibson, Helen M. / Waterson, Ben J. | British Library Online Contents | 2015