Abstract Although weather, traffic mix and speed variability across lanes are largely considered as significant determinants of traffic flow characteristics on freeways, they have not been incorporated into short-term traffic forecasting models. We evaluate the effects of weather and traffic mix on the predictability of traffic speed using several vector autoregressive moving average models with exogenous variables. Results indicate that including exogenous variables in the forecasting models only marginally improves their prediction performance, while modeling innovations such as Vector and Bayesian estimation improves the models significantly.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Does Information on Weather Affect the Performance of Short-Term Traffic Forecasting Models?


    Beteiligte:


    Erscheinungsdatum :

    18.08.2011


    Format / Umfang :

    10 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    An Improved Model for Short-Term Traffic Forecasting Considering Weather Impacts

    Chen, Xinchao / Qin, Si / Zhang, Jian et al. | ASCE | 2018


    Enhancing Short-Term Traffic Forecasting with Traffic Condition Information

    Turochy, R. E. | British Library Online Contents | 2006



    Enhancing Short-Term Velocity Forecasting Models by Using ML Models and Traffic Patterns Information

    Lira, Cristián / Véjar, Bastián / Ordóñez, Fernando et al. | Springer Verlag | 2021


    Short-Term Forecasting of Traffic Volume

    Lin, Lei / Wang, Qian / Sadek, Adel W. | Transportation Research Record | 2013