The precise boundaries of the cadastral parcels from the Unmanned Aerial Vehicle (UAV) data are essential for any eGovernance application. The pix2pix, image-to-image translation using the conditional Generative Adversarial Network (cGAN) models, has emerged as an alternative to the traditional machine learning and image processing algorithms. It has been used and demonstrated for productive purposes in different domains without any change in the pix2pix network model and loss functions. The pix2pix model is implemented in this research for extracting the cadastral parcel boundaries using the existing UAV data set, and the corresponding digitised data. The input data set is prepared using the python modules. The model is also used to predict the synthetic UAV data from the map data. The predicted boundary of the model is very useful. The proposed model can reduce the manual labour and human interventions in outlining the parcel boundary from UAV data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    UAV to Cadastral Parcel Boundary Translation and Synthetic UAV Image Generation Using Conditional-Generative Adversarial Network


    Weitere Titelangaben:

    Lecture Notes in Civil Engineering


    Beteiligte:
    Jain, Kamal (Herausgeber:in) / Mishra, Vishal (Herausgeber:in) / Pradhan, Biswajeet (Herausgeber:in) / Khadanga, Ganesh (Autor:in) / Jain, Kamal (Autor:in)

    Kongress:

    International Conference on Unmanned Aerial System in Geomatics ; 2021 ; Roorkee, India April 02, 2021 - April 04, 2021



    Erscheinungsdatum :

    16.03.2023


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch