Euler’s Theorem on rigid body displacements in three dimensions was generalized to n dimensions by Schoute late in the 19th century. The generalization states that any displacement of a rigid body about a fixed point in n dimensions can be achieved by floor(n/2) simple rotations in mutually orthogonal planes about the fixed point. Unfortunately, this elegant generalization is difficult to find in modern textbooks. It is treated here for the benefit of the present readership. The theorem is proved using the Schur decomposition of an orthogonal matrix. In addition the canonical form of a skew symmetric matrix is derived and then used to show that the angular velocity of a rigid body in n dimensions is composed of floor(n/2) angular rates in mutually orthogonal planes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Euler’s Theorem on Rigid Body Displacements Generalized to n Dimensions


    Weitere Titelangaben:

    J of Astronaut Sci


    Beteiligte:
    Bauer, Robert (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.09.2002


    Format / Umfang :

    5 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Motion of a Rigid Body by Inertia. Euler’s Case

    Chernousko, Felix L. / Akulenko, Leonid D. / Leshchenko, Dmytro D. | Springer Verlag | 2017


    Local Metrics for Rigid Body Displacements

    Eberharter, Johannes K. | Online Contents | 2004