Lithium-ion batteries play an ever-increasing role in our daily life. Therefore, it is important to understand the potential risks involved with these devices. In this work we demonstrate the thermal runaway characteristics of three types of commercially available lithium-ion batteries with the format 18650. The lithium-ion batteries were deliberately driven into thermal runaway by overheating under controlled conditions. Cell temperatures up to 850 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ $$\end{document}C and a gas release of up to 0.27 mol were measured. The main gas components were quantified with gas-chromatography. The safety of lithium-ion batteries is determined by their composition, size, energy content, design and quality. This work investigated the influence of different cathode-material chemistry on the safety of commercial graphite-based 18650 cells. The active cathode materials of the three tested cell types were (a) LiFePO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}, (b) Li(Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.45}$$\end{document}Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.45}$$\end{document}Co\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.10}$$\end{document})O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and (c) a blend of LiCoO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} and Li(Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.50}$$\end{document}Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.25}$$\end{document}Co\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{0.25}$$\end{document})O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Thermal Runaway: Causes and Consequences on Cell Level


    Weitere Titelangaben:

    SpringerBriefs in Applied Sciences


    Beteiligte:
    Thaler, Alexander (Herausgeber:in) / Watzenig, Daniel (Herausgeber:in) / Golubkov, Andrey W. (Autor:in) / Fuchs, David (Autor:in)


    Erscheinungsdatum :

    2014-01-31


    Format / Umfang :

    15 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    TWO-LEVEL METHOD FOR THERMAL RUNAWAY DETECTION

    WANG FANG / MEYER-TERUEL FIONA E / WANG TAO et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Two-level method for thermal runaway detection

    WANG FANG / MEYER-TERUEL FIONA E / WANG TAO et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    TWO-LEVEL METHOD FOR THERMAL RUNAWAY DETECTION

    WANG FANGJING / MEYER-TERUEL FIONA E / WONG TERENCE et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    MANAGING THERMAL RUNAWAY

    NULL VOLKER / PALANISAMY DURAIVELAN / MAHESHWARI SHANTANU | Europäisches Patentamt | 2021

    Freier Zugriff

    Managing thermal runaway

    NEEL VIRGINIA K / PALANISAMY DURGA / MAHESHWARI SHAILESH | Europäisches Patentamt | 2022

    Freier Zugriff