The Dirichlet problem for the bi-harmonic equation is considered as the Kirchhoff model of an isotropic elastic plate clamped at its edge. The plate is supported at certain points P1,…,PJ, that is, the deflexion u(x) satisfies the Sobolev point conditions u(P1)=⋯=u(PJ)=0. The optimal location of the support points is discussed such that either the compliance functional or the minimal deflexion functional attains its minimum.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal Location of Support Points in the Kirchhoff Plate


    Weitere Titelangaben:

    Springer Optimization


    Beteiligte:
    Buttazzo, Giuseppe (Herausgeber:in) / Frediani, Aldo (Herausgeber:in) / Buttazzo, Giuseppe (Autor:in) / Nazarov, Sergey A. (Autor:in)


    Erscheinungsdatum :

    01.01.2012


    Format / Umfang :

    24 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Optimal Location of Support Points in the Kirchhoff Plate

    Buttazzo, G. / Nazarov, S.A. | British Library Conference Proceedings | 2012


    Stepped Circular Kirchhoff Plate

    PILKEY, W. D. | AIAA | 1965


    Optimal Location of Traffic Counting Points for Transport Network Control

    Bianco, L. / Confessore, G. / Reverberi, P. et al. | British Library Conference Proceedings | 1997



    Improved Kirchhoff Stall Model Parameter Estimation Accuracy Through Optimal Data Slicing

    Brill, Pieter A.R. / Pool, Daan M. / de Visser, Coen C. | AIAA | 2025