The method of fusing visual and inertial information for localization has been shown to deliver stable navigational outcomes when the unmanned aerial vehicle (UAV) undergoes large attitude changes. However, when the UAV’s motion state changes such as sudden stopping and prolonged hovering to identify the search target, the drift noise of the IMU and insufficient constraints of the visual features results in diminished precision of localization. Furthermore, if there is interference from dynamic objects in the environment currently, incorrect visual measurement information will be introduced. To tackle the issue, this research advances a method for visual-inertial navigation anchored in the motion feature constraints, which introduces a zero-velocity update factor into optimization without increasing the number of sensors to detect the zero-velocity state of the UAV and improve the localization accuracy. By designing UAV experiments, it is proved that the method outlined in this paper indeed improves the precision of positioning in dynamic scenes where the UAV’s trajectory appears a long-time hovering compared to VINS-Fusion.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Visual-Inertial Localization Method Based on Motion Feature Constraints


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Deng, Yimin (Herausgeber:in) / Li, Yanfei (Autor:in) / Xiong, Zhi (Autor:in) / Wang, Jingqi (Autor:in) / Gao, Guanhong (Autor:in)

    Kongress:

    International Conference on Guidance, Navigation and Control ; 2024 ; Changsha, China August 09, 2024 - August 11, 2024



    Erscheinungsdatum :

    04.03.2025


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Inertial navigation system assisted visual localization

    Krys, Dennis | BASE | 2011

    Freier Zugriff

    Self-localization of UAVs based on visual-inertial integrated navigation

    Zheng, Jinghao / Lei, Bo / Tan, Hai | SPIE | 2024


    Visual‐inertial curve simultaneous localization and mapping: creating a sparse structured world without feature points

    Meier, Kevin / Chung, Soon‐Jo / Hutchinson, Seth | British Library Online Contents | 2018


    Locking On: Leveraging Dynamic Vehicle-Imposed Motion Constraints to Improve Visual Localization

    Hausler, Stephen / Garg, Sourav / Chakravarty, Punarjay et al. | ArXiv | 2023

    Freier Zugriff

    Radar-Based Localization Using Visual Feature Matching

    Elkholy, Mohamed / Elsheikh, Mohamed / El-Sheimy, Naser | British Library Conference Proceedings | 2021