In order to solve the problem of IGBT aging failure caused by the cyclic impact of thermal stress and electrical stress when working in a complex environment, a network model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) was proposed to predict the IGBT life. Collector - emitter turn-off transient voltage is selected as the failure characteristic parameter, and a CNN-LSTM hybrid model is built. In order to accelerate the training speed of the network, the activation function uses the ELU function, and the Adam algorithm is used to train the network, so as to realize the prediction of the failure characteristic parameter data. Through experimental comparison with other time series prediction models, it is verified that the hybrid model in this paper can better realize the IGBT life prediction, and also provides a certain reference value for the life prediction of other power electronic devices.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    IGBT Life Prediction Based on CNN1D-LSTM Hybrid Model


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Liang, Jianying (Herausgeber:in) / Jia, Limin (Herausgeber:in) / Qin, Yong (Herausgeber:in) / Liu, Zhigang (Herausgeber:in) / Diao, Lijun (Herausgeber:in) / An, Min (Herausgeber:in) / Liu, Qiuli (Autor:in) / Tong, Qingbin (Autor:in) / Wang, Lei (Autor:in) / An, Guoping (Autor:in)

    Kongress:

    International Conference on Electrical and Information Technologies for Rail Transportation ; 2021 October 21, 2021 - October 23, 2021



    Erscheinungsdatum :

    19.02.2022


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    IGBT Life Prediction Based on CNN1D-LSTM Hybrid Model

    Liu, Qiuli / Tong, Qingbin / Wang, Lei et al. | TIBKAT | 2022


    IGBT Life Prediction Based on CNN1D-LSTM Hybrid Model

    Liu, Qiuli / Tong, Qingbin / Wang, Lei et al. | British Library Conference Proceedings | 2022


    Research on Life Prediction of Inverter IGBT Based on WOA Optimized LSTM Model

    Wang, Yanling / Li, Na / Zhao, Wenjing et al. | IEEE | 2023


    Elevator life prediction method based on LSTM-ED

    ZHENG LIANGTIAN / LIANG ZHIHUANG / LI GUANGLING et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Short-Term Traffic Speed Prediction Using Hybrid LSTM-SVR Model

    Quach, Khang Nguyen Duc / Ren, Zhao / Tran, Khiem Vinh et al. | Springer Verlag | 2023