Aiming at the autonomous obstacle avoidance problem of UAV in multi-obstacle map environment, a UAV obstacle avoidance algorithm based on the improved Q learning method is proposed. By analyzing the UAV dynamics principle, the UAV kinematic model is built, and the Markov jump system model is further obtained. Considering the safe distance from the obstacle and the position of the target point, an improved immediate reward function is presented, and a Q learning algorithm of UAV obstacle avoidance is proposed by adopting the ε \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-greedy strategy, which can improve the learning efficiency, realize autonomous obstacle avoidance and optimize the route to the target position. In the simulation experiment, the UAV can track with down different environments and the accumulative rewards are compared and analyzed, which show the effectiveness and advantages of the UAV self-learning algorithm proposed in this paper.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-obstacle Avoidance of UAV Based on Improved Q Learning Algorithm


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Fu, Wenxing (Herausgeber:in) / Gu, Mancang (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Gao, Haochen (Autor:in) / Li, Jinna (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2022 ; Xi'an, China September 23, 2022 - September 25, 2022



    Erscheinungsdatum :

    10.03.2023


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Neural Q Learning Algorithm based UAV Obstacle Avoidance

    Zhou, Benchun / Wang, Weihong / Wang, Zhifeng et al. | IEEE | 2018


    UAV Formation Obstacle Avoidance Based on Improved Consistency Algorithm

    Hu, Shaoli / Tang, Jiankai / Chen, Chen et al. | IEEE | 2022


    Multi-UAV Cooperative Obstacle Avoidance Trajectory Planning Method Based on Improved RRT Algorithm

    Zhang, Zhaohua / Zhang, Dong / Liu, Wenyi et al. | Springer Verlag | 2025


    Learning-Based Multi-Robot Formation Control With Obstacle Avoidance

    Bai, Chengchao / Yan, Peng / Pan, Wei et al. | IEEE | 2022


    Chassis obstacle avoidance system and obstacle avoidance method

    ZHANG GENGJIA / XIAO KUAN / ZHAO WENFENG et al. | Europäisches Patentamt | 2023

    Freier Zugriff