Any autonomous rover will need to know what objects lie in its path while exploring the Egyptian catacombs. While the LiDAR can help identify objects, it can only “see” objects at the level of its LiDAR sweep. The rover misses detecting any object lower than the LiDAR sweep. It also misses any object that hangs from the ceiling that does not bisect the LiDAR sweep. We need a more robust system, called computer vision. Unfortunately, it is more computationally expensive. Computer vision mimics the way humans detect objects. Our rover needs the ability to extract information from images and recognize objects by their patterns and features. The rover must process pixels and colors to determine edges, helping it traverse the environment and avoid obstacles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    OpenCV and Perception


    Beteiligte:


    Erscheinungsdatum :

    01.11.2022


    Format / Umfang :

    35 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Drowsiness Detection System Using OpenCV

    K K, Sivanessh / Sai M, Vikram / D, Saranya | IEEE | 2025


    Face detection and tracking: Using OpenCV

    Goyal, Kruti / Agarwal, Kartikey / Kumar, Rishi | IEEE | 2017


    OpenCV Based Real-Time Traffic Analyzer

    Pandi, C / Ponnuviji, N.P / Srinivasan, R. et al. | IEEE | 2024


    Driver Drowsiness Detection System with OpenCV & Keras

    Srivastava, Mayank / Idrisi, Shoyab Alam / Gupta, Tushar | IEEE | 2021


    Real-Time Traffic Flow Management using OpenCV

    Nanda, Shivangi / Singh, Sunny / Singh, Gurpreet | IEEE | 2023