This paper introduces a groundbreaking approach to driver drowsiness detection using the AdaBoost algorithm, aiming to significantly improve road safety. Leveraging facial motion analysis, decision-level fusion, and feature scale consideration, our system achieves impressive accuracy rates of 94.86%, 88.15%, and 98.75%, respectively. Addressing the critical issue of driver drowsiness, a major contributor to road accidents, our solution harnesses the capabilities of machine learning and computer vision. By meticulously analyzing facial motion and incorporating decision-level fusion, our system exhibits robustness in identifying drowsiness cues. Furthermore, by accounting for feature scale variations, our model adapts effectively to diverse driver scenarios. These results underscore the AdaBoost algorithm’s potential in enhancing road safety through precise drowsiness detection. This research advocates for the integration of innovative algorithms into vehicular systems to mitigate the risks associated with driver drowsiness, ultimately contributing to a safer road environment and prioritizing driver well-being. The fusion of advanced technology with a focus on human-centric concerns represents a significant step towards reducing road accidents.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing Road Safety with AdaBoost-Based Drowsiness Detection for Drivers


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Vasant, Pandian (Herausgeber:in) / Panchenko, Vladimir (Herausgeber:in) / Munapo, Elias (Herausgeber:in) / Weber, Gerhard-Wilhelm (Herausgeber:in) / Thomas, J. Joshua (Herausgeber:in) / Intan, Rolly (Herausgeber:in) / Shamsul Arefin, Mohammad (Herausgeber:in) / Mahmud, Tanjim (Autor:in) / Tripura, Sajib (Autor:in) / Karim, Md. Adnan Ul (Autor:in)

    Kongress:

    International Conference on Intelligent Computing & Optimization ; 2023 ; Phnom Penh, Cambodia October 27, 2023 - October 28, 2023



    Erscheinungsdatum :

    13.12.2024


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Enhancing Road Safety with Real-time Driver Drowsiness Detection Using Machine Learning

    Burri, Rama Devi / Kusampudi, Lalitha Aradhini / Sharfuddin, Shaik Mohammed et al. | IEEE | 2024


    Drivers drowsiness detection in embedded system

    Tianyi Hong, / Huabiao Qin, | IEEE | 2007


    Drowsiness Detection for Drivers using IoT

    S S, Saranya / M N, Kavitha / M, Sivasenthil et al. | IEEE | 2023


    Driver Drowsiness Detection for Road Safety Using Deep Learning

    Saini, Parul / Kumar, Krishan / Kashid, Shamal et al. | Springer Verlag | 2023


    AI-Powered Driver Drowsiness Detection System for Augmented Road Safety

    Ganapathy, Manimozhi / Sankaradass, Veeramalai | IEEE | 2025