Aiming at the complex multi-constraint weapon target assignment problem, an improved fireworks algorithm is proposed in this paper, which introduces reverse learning strategy to the traditional method. The reverse learning strategy enables the algorithm to have greater exploration and mining ability. Simulation results show that the proposed algorithm has faster calculation speed and stronger robust capability to avoid falling into the local convergence than the conventional ones.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Weapon Target Assignment Based on Improved Fireworks Algorithm


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Yu, Xiang (Herausgeber:in) / Qu, Yaohong (Autor:in) / Wang, Wenlong (Autor:in) / Wang, Kai (Autor:in) / Du, Qingyu (Autor:in)


    Erscheinungsdatum :

    30.10.2021


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Weapon Target Assignment Based on Improved Fireworks Algorithm

    Qu, Yaohong / Wang, Wenlong / Wang, Kai et al. | TIBKAT | 2022


    Weapon Target Assignment Based on Improved Fireworks Algorithm

    Qu, Yaohong / Wang, Wenlong / Wang, Kai et al. | British Library Conference Proceedings | 2022


    Solving Weapon-Target Assignment Problem with Salp Swarm Algorithm

    Avci, İsa / Yildirim, Mehmet | BASE | 2023

    Freier Zugriff

    Novel Goal-Based Weapon Target Assignment Doctrine

    Mekawey, Hosam I. / Abd El-Wahab, M. S. / Hashem, M. | AIAA | 2009