To address the problem of poor robustness and accuracy of vehicle state and parameter estimation by conventional Kalman filter in the non-Gaussian environments, a three-degree-of-freedom vehicle model with an improved Dugoff tire model is established and a joint estimator of vehicle state and parameter is designed using the Maximum Correntropy (MC) adaptive unscented Kalman filter (AUKF) algorithm in order to simultaneously estimate and identify the yaw rate, longitudinal vehicle speed, lateral vehicle speed, vehicle mass and rotational inertia. The proposed joint estimator algorithm was validated by Simulink/CarSim simulation testbed under Double Lane Change and Sine Wave Steering Input conditions. The results show that MC combined with AUKF (MCAUKF) algorithm has higher estimation accuracy and better convergence compared to the unscented Kalman filter (UKF) and the MC combined with UKF (MCUKF) in non-Gaussian environments, and the MCAUKF estimator is more suitable for state estimation and parameter identification of real vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Joint Estimation of Vehicle State and Parameter Based on Maximum Correntropy Adaptive Unscented Kalman Filter


    Weitere Titelangaben:

    Int.J Automot. Technol.


    Beteiligte:
    Zhang, Feng (Autor:in) / Feng, Jingan (Autor:in) / Qi, Dengliang (Autor:in) / Liu, Ya (Autor:in) / Shao, Wenping (Autor:in) / Qi, Jiaao (Autor:in) / Lin, Yuangang (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.12.2023


    Format / Umfang :

    14 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Adaptive Maximum Correntropy Unscented Kalman Filter for Aero-Engine State Estimation

    Wang, Guangfeng / Gou, Linfeng / Huang, Yingzhi et al. | IEEE | 2023


    Maximum Correntropy Extended Kalman Filter for Vehicle State Observation

    Qi, Dengliang / Feng, Jingan / Ni, Xiangdong et al. | Springer Verlag | 2023


    Aerodynamic parameter estimation using adaptive unscented Kalman filter

    Majeed, M. / Narayan Kar, Indra | Emerald Group Publishing | 2013



    Unscented Kalman filter for vehicle state estimation

    Antonov,S. / Fehn,A. / Kugi,A. et al. | Kraftfahrwesen | 2011