Traction motors significantly impact locomotive efficiency, and their bearings are pivotal components. Timely detection and identification of abnormalities in these bearings are essential for the normal operation of rail transit. In this paper, we present a novel approach for detecting anomalies within the bearings of traction motors in rail transit systems. Our method is underpinned by the analysis of data from vibration sensors to detect common irregularities. To meet the demands of real-time and accurate anomaly detection, we introduce an innovative Multi-Scale Segmented Autoregressive Network (MSSAN). Specifically, the MSSAN adopts a segmented autoregressive structure, with each segment using multi-scale feature analysis on vibration sensor data over a certain time range and passing the information to the next segment in an autoregressive manner. This design incorporates contextual information, thereby balancing inference speed and accuracy, ensuring the timeliness of anomaly detection. Using a well-established test bench, we conducted simulation experiments on the proposed MSSAN. The results demonstrate the effectiveness of our method in detecting and identifying anomalies occurring in the bearings of traction motors, indicating its practical utility for ensuring normal rail transit operation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detecting Anomalies in Traction Motor Bearing Using Multi-scale Segmented Autoregressive Network


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yang, Jianwei (Herausgeber:in) / Yao, Dechen (Herausgeber:in) / Jia, Limin (Herausgeber:in) / Qin, Yong (Herausgeber:in) / Liu, Zhigang (Herausgeber:in) / Diao, Lijun (Herausgeber:in) / Liu, Qi (Autor:in) / Tian, Yin (Autor:in) / Tang, Haichuan (Autor:in) / Li, Boshi (Autor:in)

    Kongress:

    International Conference on Electrical and Information Technologies for Rail Transportation ; 2023 ; Beijing, China October 19, 2023 - October 21, 2023



    Erscheinungsdatum :

    09.01.2024


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Locomotive traction motor armature bearing life study

    Lonsdale, C.P. / Lutz, M.L. | Tema Archiv | 1997


    Locomotive Traction Motor Bearing with Separate Lubricant Reservoir

    BRINKER KEVIN | Europäisches Patentamt | 2016

    Freier Zugriff

    Segmented hoisting traction connection hemp rope device

    JIA ZHUANGLONG / HE HUANXIN | Europäisches Patentamt | 2022

    Freier Zugriff


    Proposal for grease replacement system for traction motor bearing

    Hibino, Sumiko / Nakamura, Kazuo / Hosoya, Tetsuya | IuD Bahn | 2012