Abstract Real-time road traffic state information can be used for traffic flow monitoring, incident detection and other related traffic management activities. Road traffic state estimation can be done using either data driven or model based or hybrid approaches. The data driven approach is preferable for real-time flow prediction but to get traffic data for performance evaluation, hybrid approach is recommended. In this paper, a neural network model is employed to estimate real-time traffic flow on urban road network. To model the traffic flow, the microscopic model Simulation of Urban Mobility (SUMO) is used. The evaluation of the model using both simulation data and real-world data indicated that the developed estimation model could help to generate reliable traffic state information on urban roads.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Neural Network Model for Road Traffic Flow Estimation


    Beteiligte:


    Ausgabe :

    1st ed. 2016


    Erscheinungsdatum :

    18.11.2015


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    All-day all-road network traffic flow estimation method

    CHEN JUNHUI / WU QIANG / LI YUAN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Road network traffic flow parameter estimation method and device

    ZHOU MAOSONG / LYU MING / ZHANG XIAOMING et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Urban road network traffic flow simulation method based on graph neural network

    MAO TIANLU / LIU JINGYAO / WANG ZHAOQI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Using O-D estimation in dynamic road network traffic flow simulation

    Yang, Liuqing / Zong, Gang / Liu, Yinghua | IEEE | 2014