Deep reinforcement learning (DRL) has been successfully adopted in many tasks, such as autonomous driving and gaming, to achieve or surpass human-level performance. This paper proposes a DRL-based trajectory planner for automated parking systems (APS). A thorough review of literature in this field is presented. A simulation study is conducted to investigate the trajectory planning performance of the parking agent for: (i) different neural-network architectures; (ii) different training set-ups; (iii) efficacy of human-demonstration. Real-time capability of the proposed planner on various embedded hardware platforms is also discussed by the paper, showing promising performance. Insights of the use of DRL for APS are concluded at the end of the paper.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Trajectory Planning for Automated Parking Systems Using Deep Reinforcement Learning


    Weitere Titelangaben:

    Int.J Automot. Technol.


    Beteiligte:
    Du, Zhuo (Autor:in) / Miao, Qiheng (Autor:in) / Zong, Changfu (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.08.2020


    Format / Umfang :

    7 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Parking task allocation and trajectory planning system based on multi-agent reinforcement learning

    WANG MEILING / CHEN SIYUAN / SONG WENJIE et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Trajectory Folding-based Path Planning for Automated Parking System

    Lee, Sanghyuk / Kang, Dong Hee / Kang, Chang Mook et al. | IEEE | 2018


    Autonomous Car Parking System using Deep Reinforcement Learning

    Takehara, Rikuya / Gonsalves, Tad | IEEE | 2021


    RRT Trajectory Planning Approach For Automated Semi-trailer truck Parking

    Lattarulo, Ray / Perez, Joshue / Murgoitio, Jesus | IEEE | 2022


    Crossroad lighthouse trajectory planning method based on deep reinforcement learning

    LI BOQI / ZHANG WEIWEI / CHEN JIANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff