Abstract In this paper, we use local feature transformations estimated in the matching process as initial seeds for 2D homography estimation. The number of testing hypotheses is equal to the number of matches, naturally enabling a full search over the hypothesis space. Using this property, we develop an iterative algorithm that clusters the matches under the common 2D homography into one group, i.e., features on a common plane. Our clustering algorithm is less affected by the proportion of inliers and as few as two features on the common plane can be clustered together; thus, the algorithm robustly detects multiple dominant scene planes. The knowledge of the dominant planes is used for robust fundamental matrix computation in the presence of quasi-degenerate data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Simultaneous Plane Extraction and 2D Homography Estimation Using Local Feature Transformations


    Beteiligte:
    Choi, Ouk (Autor:in) / Kim, Hyeongwoo (Autor:in) / Kweon, In So (Autor:in)


    Erscheinungsdatum :

    01.01.2007


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    ROBUST GROUND PLANE INDUCED HOMOGRAPHY ESTIMATION FOR WIDE ANGLE FISHEYE CAMERAS

    Knorr, M. / Niehsen, W. / Stiller, C. et al. | British Library Conference Proceedings | 2014


    Infinite Homography Estimation Using Two Arbitrary Planar Rectangles

    Kim, J.-S. / Kweon, I. S. | British Library Conference Proceedings | 2006


    Homography based state estimation for aerial robots

    Schwendner, Jakob | Tema Archiv | 2008


    Homography-based ground plane detection using a single on-board camera

    Arro´spide, J. / Salgado, L. / Nieto, M. et al. | IET | 2010


    Homography-Based State Estimation for Autonomous UAV Landing

    Chavez, Andres / L'Heureux, Dalton / Prabhakar, Nirmit et al. | AIAA | 2017