ThroughCompressive analysisSensing on real-world mobility data, we observe non-trivial traffic correlations among the traffic conditions of different road segments and derive a mathematical model to capture such relations. After mathematical manipulation, the models can be used to construct representation bases to sparsely represent the traffic conditions of all road segments. With the trait of sparse representation, we propose a traffic monitoring approach that applies the compressiveCompressive sensingSensing technique to achieve city-scale traffic estimations with only a small number of probe vehicles, largely reducing the system operating cost. Trace-driven experiments with real-world traffic data show that the proposed approach derives accurate traffic conditions with the average accuracy as 80%, based on only 50 probe vehicles’ intervention.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Compressive Sensing Based Traffic Monitoring Approach


    Weitere Titelangaben:

    SpringerBriefs Computer Sci.


    Beteiligte:
    Liu, Zhidan (Autor:in) / Wu, Kaishun (Autor:in)


    Erscheinungsdatum :

    19.05.2021


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Realtime urban traffic status monitoring method based on privacy-preserving compressive sensing

    LIU XIMENG / GUO WENZHONG / LI JIAYIN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    REALTIME URBAN TRAFFIC STATUS MONITORING METHOD BASED ON PRIVACY-PRESERVING COMPRESSIVE SENSING

    LIU XIMENG / GUO WENZHONG / LI JIAYIN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    The estimation of road traffic states based on compressive sensing

    Xu, Dong Wei / Dong, Hong Hui / Li, Hai Jian et al. | Taylor & Francis Verlag | 2015