Abstract To improve the train line plan quality and meet more transportation requirements, a model is presented to solve the train stops setting problem. We analyze the factors on the train setting problem and define the passenger transport efficiency. Then, an optimization model to improve the transport efficiency is constructed. The quantum particle swarm optimization algorithm is hired to solve the problem. Computing case based on Shanghai–Hangzhou high-speed railway proved the rationality of the model and the high performance of the algorithm. It is a new approach to design train stop plans which also offers constructive support for the managers of the railway bureau.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Train Stops Setting Based on a Quantum-Inspired Particle Swarm Algorithm


    Beteiligte:
    Meng, Xuelei (Autor:in) / Jia, Limin (Autor:in) / Qin, Yong (Autor:in) / Xu, Jie (Autor:in)


    Ausgabe :

    1st ed. 2016


    Erscheinungsdatum :

    01.01.2016


    Format / Umfang :

    8 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Train Stops Setting Based on a Quantum-Inspired Particle Swarm Algorithm

    Meng, Xuelei / Jia, Limin / Qin, Yong et al. | British Library Conference Proceedings | 2016


    Automatic train stops

    Engineering Index Backfile | 1912


    Calculating train stops

    Engineering Index Backfile | 1914


    Optimal Placement of Bus Stops using Particle Swarm Optimization

    Li, Changyu / Ge, Ran / Wu, Xiangcheng et al. | IEEE | 2023


    Remote controls eliminate train stops

    Engineering Index Backfile | 1955