To address the problem of the lack of interpretability of vehicle trajectory prediction models based on deep learning, this paper proposes a Fusion Neural network with the Spatio-Temporal Attention (STA-FNet) model. The model outputs a predictive distribution of future vehicle trajectories based on different vehicle trajectories and traffic environment factors, with an in-depth analysis of the Spatio-temporal attention weights learned from various urban road traffic scenarios. In this paper, the proposed model is evaluated using the publicly available NGSIM dataset, and the experimental results show that the model not only explains the influence of historical trajectories and road traffic environment on the target vehicle trajectories but also obtains better prediction results in complex traffic environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Trajectory Prediction Model Based on Fusion Neural Network


    Weitere Titelangaben:

    Lect.Notes Social.Inform.


    Beteiligte:
    Gao, Feifei (Herausgeber:in) / Wu, Jun (Herausgeber:in) / Li, Yun (Herausgeber:in) / Gao, Honghao (Herausgeber:in) / Mou, Xuemei (Autor:in) / Yu, Xiang (Autor:in) / Wang, Binbin (Autor:in) / Wang, Ziyi (Autor:in) / Deng, Fugui (Autor:in)

    Kongress:

    International Conference on Communications and Networking in China ; 2022 November 19, 2022 - November 20, 2022



    Erscheinungsdatum :

    10.06.2023


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Goal-based Neural Physics Vehicle Trajectory Prediction Model

    Gan, Rui / Shi, Haotian / Li, Pei et al. | ArXiv | 2024

    Freier Zugriff

    NEURAL NETWORK TRAJECTORY PREDICTION

    CHEN YUXIAO / IVANOVIC BORIS / PAVONE MARCO | Europäisches Patentamt | 2023

    Freier Zugriff

    Vehicle trajectory prediction based on LSTM network

    Yang, Zhifang / Liu, Dun / Ma, Li | IEEE | 2022


    Graph and Recurrent Neural Network-based Vehicle Trajectory Prediction For Highway Driving

    Mo, Xiaoyu / Xing, Yang / Lv, Chen | ArXiv | 2021

    Freier Zugriff

    Vehicle trajectory prediction method based on time-space fusion attention

    CHEN CHUJIANG / WANG LIYUAN / LUO FENG et al. | Europäisches Patentamt | 2025

    Freier Zugriff