The rapid evolution of autonomous transportation networks and smart mobility solutions has necessitated the integration of adaptive artificial intelligence (AI) models to enhance public engagement, optimize traffic flow, and ensure predictive traffic management. This research proposes a human-centric AI framework that leverages real-time adaptive learning, reinforcement-based decision-making, and scalable AI-driven public engagement models to transform urban mobility. The study introduces privacy-preserving federated AI models, bias-free decision-making algorithms, and cooperative AI traffic control systems to address challenges in mixed-traffic environments. By integrating real-time user feedback, demand-responsive transport systems, and explainable AI (XAI) governance, the proposed approach fosters public trust and ensures inclusive, ethical, and efficient smart transportation ecosystems. Furthermore, this research tackles emerging challenges such as the curse of rarity in autonomous vehicle (AV) decision-making, low-connectivity environments for smart traffic optimization, and scalable generative AI for vehicular networks. The findings highlight the importance of AI-driven public engagement in developing resilient, self-optimizing, and future-proof smart transportation systems, paving the way for next-generation predictive mobility solutions.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Artificial Intelligence Enabled Public Engagement Models for Future Autonomous Transportation Networks Smart Mobility and Predictive Traffic Optimization


    Weitere Titelangaben:

    Advances in Computer Science res


    Beteiligte:
    Kannadhasan, S. (Herausgeber:in) / Sivakumar, P. (Herausgeber:in) / Saravanan, T. (Herausgeber:in) / Senthil Kumar, S. (Herausgeber:in) / Srinivasulu, M. (Autor:in) / Preethi, K. H. (Autor:in) / Pradeep, H. (Autor:in) / Prasad, D. (Autor:in) / Raj, S. R. Arun (Autor:in) / Mahima, M. (Autor:in)

    Kongress:

    International Conference on Sustainability Innovation in Computing and Engineering ; 2024 ; Chennai, India December 30, 2024 - December 31, 2024



    Erscheinungsdatum :

    24.05.2025


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Smart transportation : AI enabled mobility and autonomous driving

    Dartmann, Guido ;Schmeink, Anke ;Lücken, Volker Mathis | TIBKAT | 2021


    Smart transportation : AI enabled mobility and autonomous driving

    Dartmann, Guido ;Schmeink, Anke ;Lücken, Volker Mathis | SLUB | 2021



    Artificial Intelligence Enabled Traffic Monitoring System

    Mandal, Vishal / Mussah, Abdul Rashid / Jin, Peng et al. | ArXiv | 2020

    Freier Zugriff

    IoT Enabled Smart Traffic System for Public and Emergency Mobility in Smart City

    R, Nagarjuna G / R, Shashidhar / B, Puneeth S et al. | IEEE | 2020