This paper addresses the problem of Simultaneous Localization and Mapping (SLAM) when working in very large environments. A Hybrid architecture is presented that makes use of the Extended Kalman Filter to perform SLAM in a very efficient form and a Monte Carlo type filter to resolve the data association problem potentially present when returning to a known location after a large exploration task. The proposed algorithm incorporates significant integrity to the standard SLAM algorithms by providing the ability to handle multimodal distributions in real time. Experimental results in outdoor environments are presented to demonstrate the performance of the algorithm proposed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust Simultaneous Localization and Mapping for Very Large Outdoor Environments


    Beteiligte:
    Siciliano, Bruno (Herausgeber:in) / Dario, Paolo (Herausgeber:in) / Nebot, Eduardo (Autor:in) / Masson, Favio (Autor:in) / Guivant, Jose (Autor:in) / Durrant-Whyte, H. (Autor:in)


    Erscheinungsdatum :

    30.06.2003


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vision-based Simultaneous Localization and Mapping in Changing Outdoor Environments

    Milford, M. / Vig, E. / Scheirer, W. et al. | British Library Online Contents | 2014




    Online Localization and Mapping with Moving Object Tracking in Dynamic Outdoor Environments

    Vu, Trung-Dung / Aycard, Olivier / Appenrodt, Nils | IEEE | 2007


    Mobile Robot Simultaneous Localization and Mapping in Dynamic Environments

    Wolf, D. F. / Sukhatme, G. S. | British Library Online Contents | 2005