The increasing number of traffic accidents worldwide necessitates innovative approaches to enhance road safety. This study integrates machine learning techniques into traffic management systems to predict accident severity, utilizing historical data from the UK Government’s open data portal (2018–2022). The dataset includes 552,648 rows and 24 columns. Various machine learning models were evaluated to determine their effectiveness in predicting accident severity. The Random Forest classifier demonstrated superior performance across all metrics, correctly identifying 80% of the labels across all classes. Data preprocessing involved merging vehicle and collision datasets, removing non-essential columns, and handling missing values to ensure data quality. Feature engineering categorized engine capacities and generalized accident timestamps to enhance predictive power. The study highlights the potential for real-time implementation of these predictive models in Intelligent Transportation Systems (ITS), providing actionable insights for driver guidance and improving road safety. Future research could integrate real-time data and advanced ML frameworks like AutoML to refine these models further, making traffic management strategies more dynamic and responsive to real-world conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing Road Safety: Predictive Modeling of Traffic Accident Severity Using Machine Learning


    Weitere Titelangaben:

    Smart Innovation, Systems and Technologies


    Beteiligte:
    In, Chakchai So (Herausgeber:in) / Londhe, Narendra S. (Herausgeber:in) / Bhatt, Nityesh (Herausgeber:in) / Kitsing, Meelis (Herausgeber:in) / Patel, Jinay (Autor:in) / Rao, Divya (Autor:in)

    Kongress:

    World Conference on Information Systems for Business Management ; 2024 ; Bangkok, Thailand September 12, 2024 - September 13, 2024



    Erscheinungsdatum :

    21.06.2025


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Machine Learning Applications in Traffic Safety: Assessing Accident Severity Automatically

    Priyanka, S / Jayadharshini, P / Santhiya, S et al. | IEEE | 2023




    Classification of Traffic Accident Severity Using Machine Learning Models

    Hamdan, Noura / Sipos, Tibor | Springer Verlag | 2025


    Prediction of Road Traffic Accident Severity Using Machine Learning Techniques in the Case of Addis Ababa

    Wubineh, Betelhem Zewdu / Asamenew, Yigezu Agonafir / Kassa, Semachew Molla | Springer Verlag | 2024