Self-driving vehicles are being tested to make them more road-ready and safer for a real traffic environment. Automobile giants: like Tesla, Waymo, Toyota, etc., are working exhaustively to cater to the needs of futuristic smart vehicles using deep learning methodologies. For a self-driving car to avoid collision situation, it must be able to accurately detect and classify traffic lights. After performing exhaustive experiments, we chose to compare the feature extraction capabilities of various pretrained CNN-based transfer learning models like VGG16, ResNet50, AlexNet, DenseNet121, InceptionV3, and Xception on freely available Lara & Lisa traffic light datasets. We segregated the Lisa traffic light dataset into day and night subsets and then manually separated the images into various traffic light classes like dayRed, dayYellow, nightYellow, nightGreen, road and traffic lights, LeftGreenArrow, and RightGreenArrow etc. We used the random forest classifier to identify the color of the detected traffic light. DenseNet121 achieved a top accuracy of 100% on the Lara traffic light dataset and the maximum accuracy of 99.88% on the Lisa Day-light dataset and 98.89% accuracy on the Lisa Night-light dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Automatic Traffic Light Detection for Self-Driving Cars Using Transfer Learning


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Nagar, Atulya K. (Herausgeber:in) / Jat, Dharm Singh (Herausgeber:in) / Marín-Raventós, Gabriela (Herausgeber:in) / Mishra, Durgesh Kumar (Herausgeber:in) / Gautam, S. (Autor:in) / Kumar, A. (Autor:in)


    Erscheinungsdatum :

    03.01.2022


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic Light Detection System in Self-Driving Cars

    Kanchanamala, P. / Dharani, A. / Chandana, J. Siri et al. | IEEE | 2023


    Deep Traffic Light Detection for Self-driving Cars from a Large-scale Dataset

    Kim, Jinkyu / Cho, Hyunggi / Hwangbo, Myung et al. | IEEE | 2018


    TRAFFIC DISPERSION SYSTEM FOR SELF DRIVING CARS

    CHOI JINSEONG / SHIN SEONGEUN / LEE HOJIN et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Traffic Models for Self-driving Connected Cars

    Gora, Paweł / Rüb, Inga | Elsevier | 2016

    Freier Zugriff

    TRAFFIC DISPERSION SYSTEM FOR SELF DRIVING CARS

    Europäisches Patentamt | 2022

    Freier Zugriff